Sebuahlampu hias berubah warna dari hijau,kemudian kuning,kemudian merah dan seterusnya berubah setiap 2 detik dengan pola yang apakah - 32878 agusantoni381 agusantoni381 15.09.2020 Matematika Sekolah Menengah Atas terjawab
ALJABARKelas 10 SMA. Sistem Persamaan Linear. Sistem Persamaan Linear Dua Variabel. Mira dan Reni membeli kue di toko "Murah". Mira membeli 3 kue pisang dan 5 kue keju, ia membayar Rp13.100,00. Reni membeli 2 kue pisang dan 2 kue keju, ia membayar Rp6.600,00. Mira dan Reni membeli kue dengan harga satuan yang sama.
Untukmembuat sebuah kue jenis A diperlukan 500 g terigu dan 75 g mentega, sedangkan sebuah kue jenis B diperlukan 200 g terigu dan 100 g mentega. Jika keuntungan 1 buah kue jenis A Rp5.000,00 dan 1 buah kue jenis B adalah Rp3.000,00, buatlah model matematika dari masalah tersebut!
Temukangambar Kue Bebas-royalti Tidak ada atribut yang di perlukan Gambar berkualitas tinggi. blueberry kue buah. minum kopi kafe. kue makaroni makanan. kue bluberi mangkuk. wanita apple pie. permen cokelat. kopi cangkir kue. Temukan lebih dari 4.4 juta gambar dan video yang dibagikan oleh komunitas kami yang dermawan.
Tolongjawab pake cara - 27594051 yeremiamunthe4 yeremiamunthe4 yeremiamunthe4
Panaskanair sampai mendidih sekitar 1-2 jam. Setelah itu, saring air yang sudah berisi campuran buah bidara, jahe, dan kayu manis. Anda bisa meminumnya selagi hangat atau ditambahkan es. Anda bisa menambahkan pemanis seperti madu, gula, dan rempah-rempah. 2. Jus bidara. Siapkan buah bidara mentah, lalu bersihkan dan potong menjadi beberapa bagian.
. “pembuat kue mempunyai” maka tanda yang digunakan adalah ≤. Penulisan model matematika untuk bahan gula yang dimiliki gula kue A + gula kue B ≤ gula seluruhnya 20x + 20y ≤ x + y ≤ 200 Penulisan model matematika untuk bahan tepung yang dimiliki tepung kue A + tepung kue B ≤ tepung seluruhnya 60x + 40y ≤ 3x + 2y ≤ 450 Tentukan titik-titik dari persamaan garis dan gunakan titik uji untuk mengetahui daerah penyelesaian 3x + 2y ≤ 450 x + y ≤ 200 0,225 dan 150,0 0,200 dan 200,0 Daerah himpunan penyelesaiannya adalah Titik potong ditentukan sebagai berikut Misalkan nilai x x + y = 200 x = 200 - y Substitusi nilai x 3x + 2y = 450 3200 - y + 2y = 450 600 - 3y + 2y = 450 y = 150 Setelah memperoleh nilai y, hitung nilai x x + y = 200 x + 150 = 200 x = 200 - 150 = 50 Titik potong 50 , 150. Substitusi titik-titik pada daerah penyelesaian Maka pendapatan maksimum yang diperoleh adalah Rp
MatematikaALJABAR Kelas 8 SMPSISTEM PERSAMAAN LINEAR DUA VARIABEL SPLDVPenerapan Sistem Persamaan Linear Dua VariabelAsri membeli buah roti 3 A dan 5 buah roti B dengan harga Sedangkan Barkah juga membeli 1 buah roti A dan 1 buah roti B dengan harga Jika Cantik ingin membeli 4 buah roti A dan 2 buah roti B, maka jumlah uang yang harus ia bayar adalah ... A. B. C D. Sistem Persamaan Linear Dua VariabelSISTEM PERSAMAAN LINEAR DUA VARIABEL SPLDVALJABARMatematikaRekomendasi video solusi lainnya0218Seorang ibu memiliki lembaran uang sepuluh ribuan dan lim...Seorang ibu memiliki lembaran uang sepuluh ribuan dan lim...0153Harga 1 kg beras dan 2 kg gula pasir Harga s...Harga 1 kg beras dan 2 kg gula pasir Harga s...0055Rina membeli 3 kg apel dan 2 kg jeruk. Uang yang harus di...Rina membeli 3 kg apel dan 2 kg jeruk. Uang yang harus di...0249Diketahui harga 5 kg apel dan 3 kg jeruk Rp harga 5 kg apel dan 3 kg jeruk Rp
Kelas 11 SMAProgram LinearNilai Maksimum dan Nilai MinimumSeorang pembuat kue mempunyai 4 kg gula dan 9 kg tepung. Untuk membuat sebuah kue jenis A dibutuhkan 20 gram dan 60 gram gula tepung, sedangkan untuk membuat sebuah kue jenis B dibutuhkan 20 gram gula dan 40 gram tepung. Jika kue A dijual dengan harga dan kue B dijual dengan harga maka pendapatan maksimum yang dapat diperoleh pembuat kue tersebut adalah ....Nilai Maksimum dan Nilai MinimumProgram LinearALJABARMatematikaRekomendasi video solusi lainnya0533Nilai maksimum dari P=2x+3y pada daerah 3x+y>=9, 3x+2y=3,...Teks videoHalo friends pada soalnya terdapat soal cerita yang merupakan aplikasi dari program linear di mana pertama-tama kita ilustrasikan terlebih dahulu soal cerita ini dalam bentuk tabel lalu kita cari model matematikanya sehingga kita peroleh pendapatan maksimum yang diperoleh pembuat kue tersebut gimana perlu kita ingat bahwa nilai dari 1 kg adalah = 1000 gram sehingga pada sore ini diketahui bahwa seorang pembuat kue mempunyai 4 Kg gula dan 9 kg tepung maka disini total gulanya adalah 44 * 1000 adalah 4000 gram dan tepungnya adalah 9000 gram lalu di ketahui pada kue a dibutuhkan 20 gram gula dengan 60 gram tepung, Sedangkan untuk membuat sebuah kue B dia memerlukan 20 G gulaDan 40 gram tepung dengan harga masing-masing pada kue a dijual adalah per buahnya sedangkan PDB adalah karena disini model persediaan ingat bahwa pada model matematikanya nilai x ya harus lebih besar sama dengan nol dan isinya harus lebih besar sama dengan nol. Jika kita asumsikan nilai a adalah X dan nilai b adalah y maka model matematika bentuk pertidaksamaan X kita peroleh yang pertama untuk gula adalah 20 x ditambah 20 y karena dia hanya mempunyai 4 Kg gula dan 9 kg tepung maka pembuatan gula dan tepung nya tidak boleh melebihi kapasitas yang dia punya makapertidaksamaan ini kita Tandai oleh tanda kurang dari sama dengan sehingga 20 x ditambah 20 Y kurang dari = 4000 untuk menyederhanakan ya pada ruas kiri dan kanan kita bagi dengan 20 sehingga bentuk dari pertidaksamaan adalah X + Y kurang dari sama dengan 200 yang kedua adalah kita punya model untuk tepung maka 60 x ditambah 40 Y kurang dari sama dengan 9000 pada ruas kiri dan kanan untuk pertidaksamaan ini kita bagi dengan 20 maka kita boleh 3 x ditambah 2 Y kurang dari sama dengan 450 lalu kita buat grafik dari pertidaksamaan ini di mana bentuk pertidaksamaanbentuk terlebih dahulu ke dalam bentuk persamaan untuk mencari titik potong terhadap sumbu x dan sumbu y nya Kita tahu bersama pertamanya adalah x + y = 200 kita cari titik potong terhadap sumbu x yaitu ketika Y nya sama dengan nol sehingga x + 0 = 200 maka kita oleh X = 200 sehingga titik potong terhadap sumbu x nya adalah 200,0 selanjutnya kita cari titik potong terhadap sumbu y nya yaitu jika x y = 0 maka 0 + y = 200 y = 200 maka titik potong terhadap sumbu y adalah 0,200 selanjutnya kita cari untuk pertidaksamaan keduanya sehingga kita peroleh persamaannya adalah 3xtambah 2 y = 450 maka pertama-tama titik potong terhadap sumbu x yaitu ketika y = 0 maka 3 x ditambah 2 x 0 = 453 x = 450 pada ruas kiri dan kanan kita bagi dengan 3 sehingga kita peroleh nilai dari X Y adalah = 150 hingga titik potong terhadap sumbu x pada grafik keduanya adalah 150,0 lanjut ya kita cari titik potong terhadap sumbu y nya yaitu ketika x = 0 sehingga 3 * 0 + 2 y = 450 maka 2 y = 450 pada ruas kiri dan kanan kita bagi dengan 2 sehingga nilai dariAdalah = 225 maka titik potong terhadap sumbu y nya grafik keduanya adalah 0,225 dari sini kita pindahkan ke koordinat kartesius sehingga kita peroleh grafiknya adalah sebagai berikut. Karena ini adalah bentuk dari pertidaksamaan dengan x lebih besar sama dengan 0 dan Y lebih besar sama dengan nol maka grafiknya kita batasi oleh kuadran 1 dengan garis hubung antar titik potongnya ditandai oleh garis yang tidak putus-putus karena di sini bentuk dari pertidaksamaan nya terdapat = sedangkan jika tidak ada sama dengan maka grafik ini kita Tandai oleh garis yang putus-putus selanjutnya karena ini bentuk pertidaksamaan maka kita harus dari daerah himpunan penyelesaian Nya maka dari sini kita perhatikan pertama-tama Kita uji dengan titik 0,0 untuk grafik pertama Karena dia 0tambah dengan 0 kurang dari sama dengan 200 karena pernyataan ini benar maka daerah himpunan penyelesaian nya berada dibawah grafik ini ma kakak arsir dengan warna hijau selanjutnya 3 x + 2 Y kurang dari sama dengan 450 maka dari sini Kita uji titik pula dengan 0,0 maka kita peroleh 3 * 0 + 2 * 0 adalah 00 kurang dari sama dengan 450 karena pernyataan ini benar maka kasir daerah yang dibawa grafiknya dengan warna biru dengan daerah himpunan penyelesaian ya adalah yang dilalui oleh kedua himpunan penyelesaian dari grafik ini maka kita batasi daerah himpunan penyelesaiannya dibatasi oleh titik atitik B dan titik c serta titik 0,0 di mana dari sini kita cari adalah pendapatan maksimum sehingga kita oleh fungsi tujuan yaitu fraksinya adalah = 4000 x ditambah dengan 3000 y karena di sini titik koordinat C kita tidak ketahui maka kita harus cari terlebih dahulu dengan cara eliminasi dan subtitusi kita ketahui bahwa persamaan pertamanya adalah + y = 200 lalu persamaan keduanya adalah 3 x + 2 y = 450 karena kita ingin eliminasi variabel Y nya sehingga Untuk Pertama Pertama kita x 2 persamaan ke-2 kita x 1 sehingga kita peroleh pertamanya menjadi 2 x + 2y = 400Kalau persamaan keduanya adalah 3 x + 2 y = 450 b. Kurangi kedua persamaan ini sehingga kita peroleh negatif X = negatif 50 maka kita peroleh nilai x y adalah = negatif 50 dibagi dengan negatif 1 adalah 50 lalu kita cari nilainya dengan mensubstitusikan ke dalam persamaan pertama maka kita peroleh nilai dari X + Y = 200 y = 200 dikurang x y = 200 dikurang 50 maka isinya adalah = 150 sehingga kita peroleh koordinat titik potong dua grafik ini ada di x nya = 50 dan Y = 150Dian kita subtitusikan titik potong ini titik a titik B titik C untuk mencari titik maksimum nya dimana titik koordinat A berada di titik nol koma 200 maka kita peroleh fpb-nya adalah = 3000 X dengan 200 yaitu = 600000 karena di sini dalam rupiah maka di sini kita Tandai oleh lalu titik koordinat b adalah 150,0 maka kita peroleh fb-nya adalah = 4000 dikali dengan 150 yaitu = lalu untuk titik koordinat C kita ketahui adalah x y = 50 dan Y adalah50 maka F koordinat c nya adalah = 4000 X dengan 50 + dengan 3000 dikali dengan 150 maka kita peroleh = 200000 + dengan 450000 maka kita peroleh fc-nya adalah karena pada soal ini diminta adalah pendapatan maksimum yang dapat diperoleh pembuat kue tersebut maka kita cari titik maksimum nya yaitu pada titik koordinat yaitu 50 koma 150 dengan pendapatannya adalah maka jawaban yang tepat pada soal ini ada pada pilihan B sekian sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
harga 5 buah kue a dan 2 buah kue b